Social Media Analysis Training for Digital Talent Development in Indonesia

Wachda Yuniar Rochmah, Vessa Rizky Oktavia, Alqis Rausanfita, Maulana Naufal Hakim, Dara Ilma Deudoena, Dhiki Sidik Sayoga

Abstract


The development of digital technology has allowed people to share opinions on social media, send emails, make purchases online, to make phone calls every day. As a result, the amount of data continues to grow rapidly day by day. Most of the data available today is public and accessible to anyone, such as social media data, blogs, news, discussion forums, public government data, and others. With the immense value of this abundant source of social media data, there is an opportunity to extract knowledge or insights from this unstructured social media data, especially to understand opinions, current trends, or influential actors on information spread on the internet. As part of Telkom Surabaya's IT Community Service team that supports student development in SMA/SMK/MA, we propose solutions to the main problems faced today, namely in the field of data analysis. The solutions we offer are also in line with the government's program to increase Digital Talent in Indonesia. In the midst of increasing demand for Digital Talent, there is still a gap between the need for digital talent and job opportunities in Indonesia. The program we will create is Social Media Analysis Training, which will provide an understanding of the benefits of open social media data in general, how to take insights from social media data, and solve problems in various fields.

 

 


Keywords


Big Data, Data Analytics, Digital Talent, Social Media Analysis

Full Text:

PDF

References


Pentingnya talenta Digital Menuju Transformasi Digital di Era Milenial. Retrieved June 21st, 2023 from SMK Negeri 22 Jakarta. website: https://www.smkn 22jakarta.sch.id/berita-pendidikan/pentingnya-talenta-digital-menuju-transformasi-digital-di-era-milenial/

Digital Talent Scholarship. Retrieved June 21st, 2023 from Kementerian Komunikasi dan Informatika Republik Indonesia webiste: https://digitalent. kominfo.go.id/program

Data Pokok Pendidikan. Retrieved June 21st, 2023 from Direktorat Jenderal Pendidikan Anak Usia Dini, Pendidikan Dasar dan Pendidikan Menengah Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi website: https://dapo.kemdikbud. go.id/sp

Indonesia Mengejar Kebutuhan 9 Juta Talenta Digital . Retrieved November 16th, 2023 from Kompas website: https://www.kompas.id/baca/nusantara/2023/09/11/indonesia-mengejar-kebutuhan-9-juta-talenta-digital

Tabassum, S., Pereira, F. S., Fernandes, S., & Gama, J. (2018). Social network analysis: An overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(5), e1256.

Kartino, A., & Anam, M. K. (2021). Analisis Akun Twitter Berpengaruh terkait Covid-19 menggunakan Social Network Analysis. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(4), 697-704.

Sulistiawati, A., & Lubis, D. P. (2014). Social Network Analysis in Farmers Group (Gapoktan) of Tani Berkah. Sodality: Jurnal Sosiologi Pedesaan, 2(2).

Rinaldo, R., Sari, A. P., & Fardiana, E. (2023). DIGITAL OPINION# PUANADALAHHARAPAN DI MEDIA SOSIAL TWITTER MENGGUNAKAN SOCIAL NETWORK ANALYSIS. Jurnal Ilmiah Multidisiplin, 2(01), 19-29.

Witten, I. H. (2004). Text Mining.

Radovanović, M., & Ivanović, M. (2008). Text mining: Approaches and applications. Novi Sad J. Math, 38(3), 227-234.

Vidhya, K. A., & Aghila, G. (2010). Text mining process, techniques and tools: an overview. International Journal of Information Technology and Knowledge Management, 2(2), 613-622.

Khan, M., Khan, M. S., & Alharbi, Y. (2020). Text mining challenges and applications—a comprehensive review. IJCSNS, 20(12), 138.

Martínez-Cámara, E., Martín-Valdivia, M. T., Urena-López, L. A., & Montejo-Ráez, A. R. (2014). Sentiment analysis in Twitter. Natural language engineering, 20(1), 1-28.

Rintyarna, B. S. (2017). Sentiment Analysis pada Data Twitter dengan Pendekatan Naïve Bayes Multinomial. JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), 2(1).

Susanto, A., Maula, M. A. I., Mulyono, I. U. W., & Sarker, M. K. (2021). Sentiment Analysis on Indonesia Twitter Data Using Naïve Bayes and K-Means Method. Journal of Applied Intelligent System, 6(1), 40-45.

Ramasamy, L. K., Kadry, S., Nam, Y., & Meqdad, M. N. (2021). Performance analysis of sentiments in Twitter dataset using SVM models. International Journal of Electrical and Computer Engineering (IJECE), 11(3), 2275-2284.

Prabowo, N. A., Pujiarto, B., Wijaya, F. S., Gita, L., & Alfandy, D. (2021). Social network analysis for user interaction analysis on social media regarding e-commerce business. International Journal of Informatics and Information Systems, 4(2), 95-102.

Husen, R. A., Astuti, R., Marlia, L., Rahmaddeni, R., & Efrizoni, L. (2023). Analisis Sentimen Opini Publik pada Twitter Terhadap Bank BSI Menggunakan Algoritma Machine Learning: Sentiment Analysis of Public Opinion on Twitter Toward BSI Bank Using Machine Learning Algorithms. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 211-218.




DOI: http://dx.doi.org/10.58258/abdi.v5i2.6219

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Wachda Yuniar Rochmah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View AbdiMas Stats