Representasi Penalaran Kuantitatif Siswa Dalam Pemecahan Masalah Matematika

Syarifuddin Syarifuddin

Abstract


Penelitian ini bertujuan untuk mendeskripsikan representasi penalaran kuantitatif siswa dalam pemecahan masalah matematika. Jenis penelitian ini merupakan penelitian kualitatif dengan pendekatan deskriptif eksploratif. Subjek penelitian adalah 12 orang siswa sekolah menengah disalah satu SMA Negeri kabupaten Bima – NTB. Proses penelitian dengan memberikan tes berupa soal pemecahan masalah, kemudian dianalisis dalam dua tahap yaitu tahap klasifikasi jawaban dan tahap deskripsi. Adapun hasil penelitian menunjukan representasi penalaran kuantitatif siswa dapat berupa representasi secara eksternal dan internal. Representasi eksternal berupa simbolisasi aljabar dan aritmatika, menciptakan persamaan, gambar/sketsa, dan verbal. Siswa merepresentasikan penalaran kuantitatif dengan menggunakan satu atau lebih jenis represntasi. Representasi internal berupa proses kognitif yang berwujud pada analogi dan cara pandang.

References


Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23(1), 2-33.

Dwyer, C. A., Gallagher, A., Levin, J., & Morley, M. E. 2003. What is quantitative reasoning? Defining the construct for assessment purposes. ETS Research Report Series, 2003(2).

Ellis, A.B. (2011). Algebra in The Middle Schools: Developing Functional Relationship Through Quantitative Reasoning.Madison, USA: School of Education, University of Wisconsin- Madison.

Goldin, G., & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. Cuoco & F. Curcio (Eds.), The roles of representation in school mathematics. Reston, VA: National Council of Teachers of Mathematics.

Guler, G., & Çiltas, A. (2011). The visual representation usage levels of mathematics teachers and students in solving verbal problems. International Journal of Humanities and Social Science, 1(11), 145-154.)

Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of educational psychology, 91(4), 684.

Jones, B.F., & Knuth, R.A. (1991). What does research ay about mathematics? [on-line]. Available: http://www. ncrl.org/sdrs/areas/stw_esys/2math.html.

Koedinger, K.R dan Nathan, M.J. 2004. Real Story Behind Story Problem: Effect of Representation on Quantitative Reasoning. New York: Lawrence Erlbaum Associate.

Mielicki, M. K., & Wiley, J. (2016). Alternative Representations in Algebraic Problem Solving: When are Graphs Better Than Equations?. The Journal of Problem Solving, 9(1), 1.)

NCTM., 2000. Principle and Standards for Schools Mathematics. Resto, VA.

Pape, S. J., & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding. heory into Practice, 40(2), 118-127.

Ruiz Ledesma, E. F. (2011). The graphical representation register as support in understanding concepts of calculus. Problems of Education in the 21st Century, 35.

Smith, J., & Thompson, P. W. (2007). Quantitative reasoning and the development of algebraic reasoning. Algebra in the early grades, 95-132.

Solovieva, Y., & Quintanar, L. (2013). Symbolic Representation for Introduction of Concept of Decimal System in Mexican School Children. International Education Studies, 6(10), 102.)

Stylianou, D. A. (2013). An Examination of Connections in Mathematical Processes in Students' Problem Solving: Connections between Representing and Justifying. Journal of Education and Learning, 2(2), 23.)

Weber, E., Ellis, A., Kulow, T., & Ozgur, Z. 2014. Six Principles for Quantitative Reasoning and Modeling. Mathematics Teacher, JRME, 108(1), 24-30.




DOI: http://dx.doi.org/10.1234/.v0i0.444

Refbacks

  • There are currently no refbacks.