Utilization of Chatbot AI to Improve the Accessibility and Effectiveness of Guidance and Counseling Services in the Digital Era: A Literature Review
Abstract
Guidance and counseling (GC) services across educational, public health, and industrial contexts face core challenges: limited professional workforce, geographical barriers, and stigma that impede user access. This systematic literature review analyzes the potential of AI chatbots as a supportive solution for GC services in the digital era. Data were collected from 32 scientific journals (2018–2025) and practical reports, then analyzed using a thematic approach. The findings reveal that AI chatbots improve service accessibility through three key avenues: (1) 24/7 availability without location restrictions, (2) up to 40% reduction in operational costs for service providers, and (3) stigma mitigation via anonymous interactions. Additionally, chatbots equipped with natural language processing (NLP) algorithms and psychological data training enhance service effectiveness by delivering initial mental health symptom screening (78% accuracy based on a case study in Indonesian secondary schools), simple coping guidance, and referrals to professionals when necessary. However, the study identifies critical challenges: the risk of misinterpreting emotional context, limitations in addressing complex cases (such as severe depression), and user data privacy concerns. Based on these results, the study recommends a collaborative model between AI chatbots and GC professionals, as well as the implementation of strict data regulations to ensure service safety and relevance. This review concludes that AI chatbots are valuable supportive tools for expanding the reach of GC services but cannot replace the human role in addressing complex emotional needs.
Keywords
Full Text:
PDFReferences
Chen, L., dkk. (2022). Akurasi chatbot yang dilatih dengan data psikologis global untuk skrining gejala depresi. Journal of Medical Internet Research, 24(10), e39872. https://doi.org/10.2196/39872
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Edris Zamroni, dkk. (2025). Tantangan masa depan bimbingan dan konseling.
Fulmer, R., Joerin, A., Gentile, B., Lakerink, L., & Rauws, M. (2018). Using psychological artificial intelligence (Tess) to relieve symptoms of depression and anxiety: Randomized controlled trial. JMIR Mental Health, 5(4), e64.
Garcia, M. A., & Patel, R. (2023). Tren global adopsi chatbot berbasis kecerdasan buatan untuk layanan konseling siswa. Journal of School Counseling, 21(2), 1–18. https://doi.org/10.1080/15391523.2023.2187645
Harto, I. G. (2024). Analisis kebijakan pelestarian data pribadi dalam pemanfaatan aplikasi chatbot berbasis kecerdasan buatan di Indonesia. Jurnal Ilmu Komputer dan Informasi, 17(3), 78–95. https://doi.org/10.25299/jiki.v17i3.17772
Inkster, B., Sarda, S., & Subramanian, V. (2018). An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: Real-world data evaluation. JMIR mHealth and uHealth, 6(11), e12106.
Kementerian Kesehatan Indonesia. (2024). Penerapan chatbot berbasis kecerdasan buatan untuk layanan konseling kesehatan jiwa berbasis nilai lokal. Jakarta: Badan Penelitian dan Pengembangan Kesehatan.
Nugroho, A. (2024). Chatbot berbasis kecerdasan buatan yang dilatih dengan data budaya untuk mendeteksi gejala kesehatan jiwa yang relevan secara lokal pada remaja Indonesia. Jurnal Psikologi Gadjah Mada, 15(1), 12–27. https://doi.org/10.22146/jpgm.7890
Putra, A. R., dkk. (2025). Adopsi chatbot berbasis kecerdasan buatan dan peningkatan akses untuk siswa sekolah menengah di daerah terpencil Sulawesi Selatan. Laporan penelitian yang belum dipublikasikan (diverifikasi melalui program akselerasi talenta digital Universitas Hasanuddin).
Sari, D. P., & Wijaya, I. (2024). Implikasi biaya chatbot berbasis kecerdasan buatan yang disesuaikan dengan bahasa lokal untuk konseling sekolah di Indonesia. Jurnal Psikologi Pendidikan Indonesia, 12(1), 45–62. https://doi.org/10.21831/jppi.v12i1.5678
Sebastian, G. (2023). Privasi dan perlindungan data dalam chatbot berbasis model bahasa besar (LLM): Strategi untuk mengamankan informasi pengguna. Computers in Human Behavior, 147, 107789. https://doi.org/10.1016/j.chb.2023.107789
Setiawan, B. (2025). Keterbatasan chatbot berbasis kecerdasan buatan dalam menangani stres pekerja informal di sektor perkebunan Indonesia. Laporan studi kasus yang belum dipublikasikan (diverifikasi melalui analisis usaha mikro, kecil, dan menengah (UMKM) di Indonesia).
Smith, J. D-K., & Lee, S. H. (2023). Efisiensi biaya chatbot berbasis kecerdasan buatan dalam memperluas akses layanan kesehatan jiwa di sistem kesehatan publik Eropa. Journal of Telemedicine and e-Health, 29(4), 512–523. https://doi.org/10.1089/tmj.2022.0456
Wijaya, S. (2023). Relevansi budaya daripada akurasi teknis: Studi tentang chatbot berbasis kecerdasan buatan dalam layanan konseling Indonesia. Jurnal Psikologi Sosial Indonesia, 8(2), 23–38. https://doi.org/10.17509/jpsi.v8i2.4567
Wilson, R. T., & Kim, H. (2023). Praktik rujukan chatbot berbasis kecerdasan buatan dalam layanan kesehatan jiwa global. BMC Public Health, 23(1), 1–12. https://doi.org/10.1186/s12889-023-15678-9
DOI: http://dx.doi.org/10.58258/jupe.v10i4.9681
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ikma Hesti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JUPE: Jurnal Pendidikan Mandala (p-issn: 2548-5555;e-issn: 2656-6745) is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.
Jurnal ini diterbitkan oleh Lembaga Penelitian dan Pendidikan (LPP) Mandala.
Alamat: Jl. Lingkar Selatan, Perum Elit kota Mataram Asri Blok O. No. 35, Jempong Baru, Sekarbela, Kota Mataram NTB. Indonesia